Least Squares Fitting and Equation Solving with MPFIT

Craig Markwardt

University of Maryland and NASA's Goddard Spaceflight Center

http://purl.com/net/mpfit 2009-04-15

Data and Modeling

- Least squares fitting
- Act of hypothesis testing
- Simple Hypothesis:
 - data $\{x_i, y_i\}$ are consistent with model $f(x_i, p)$ to within the measurement uncertainties σ_i
 - where $\{x_i\}$ is the independent variable and $\{y_i\}$ is the dependent variable
 - $f(x_i,p)$ is the model function, which is parameterized by parameters p

Fitting Example

We Often "Know" When a Fit is Bad ...

... because the Residuals are Large

Summary

- At its basic level a "good fit" should minimize the residuals, r_i, between the data and model
- To balance the measurements with large and small uncertainty appropriately, our "scaled" residual looks like this,

"residual"
$$y_i - f(x_i, p) = \frac{\sigma_i}{\sigma_i}$$
 "measurement uncertainty"

 In an ideal world, we would want a perfect match between data and model, i.e. solve the following equations simultaneously for M data points:

$$r_0 = 0$$

$$r_1 = 0$$

$$r_M = 0$$

- Instead we solve the system of equations in a "least squares" sense
- Define the chi-square statistic as the sum of the squared residuals,

$$\chi^2 = \sum_{i=1}^{M} r_i^2$$

and minimize this statistic.

Statistical Background

- The chi-square statistic is important and well known
- For gaussian statistics, chi-square minimization should be equivalent to the maximum likelihood parameter estimate
- In the real world, an optimal chi-square value

$$\chi^2 \sim M$$

each data point contributes one degree of freedom.

Chi-Square Test

Good fit:

$$\chi^2 \sim 19.9$$

for 20 data points

• Bad fit:

$$\chi^2 \sim 756$$

for 20 data points

Existing Fitting Tools in IDL

- General non-linear:
 - CURVEFIT Bevington algorithm (vectorized)
 - LMFIT Numerical recipes (not vectorized)
- Specialized:
 - LINFIT linear (y = ax + b)
 - POLY_FIT polynomial
 - SVDFIT linear combinations
 - GAUSSFIT peak fitting

Introducing MPFIT

- Powerful fitting engine based on MINPACK-1 (Moré and collaborators; http://netlib.org/minpack/)
- Robust factorization and stepping algorithms
- Innovations:
 - Private data to user functions (FUNCTARGS)
 - Parameter upper and lower bounds (PARINFO)
 - User chooses who computes derivatives
 - Control over iteration, console output, stopping tolerances

 MPFIT is the main fitting engine, can solve any chi-square minimization problem expressable as

$$\min_{p} \sum_{i=1}^{M} r_i(p)^2$$

Classic least squares fitting looks like this,

$$r_i(p) = \frac{y_i - f(x_i, p)}{\sigma_i}$$

but we will warp this to other uses later. Dimensionality of x or y are not important!

The MPFIT Family of Routines

- Core fitting engine: MPFIT
- 1D Convenience routines:
 - MPFITFUN
 - MPFITEXPR command line fitting
 - MPFITPEAK peak fitting
 - MPCURVEFIT drop-in replacement for CURVEFIT
- 2D Convenience routines:
 - MPFIT2DFUN
 - MPFIT2DPEAK peak fitting

Simple Example: MPFITEXPR

- Basic command line fitting, great for diagnosing data on the fly
- You supply a model function expression

```
-\exp r = 'P[0] + X*P[1] + X^2*P[2]'
```

And then call MPFITEXPR

```
"x" "y" "errors" "start values"
- p = mpfitexpr(expr, xx, ys, ye, [1,1,1d], ...)
```

Demo (mpfit_expr.pro)

MPFITFUN, MPFIT2DFUN

 For general fitting of a known model function, you will probably graduate to MPFITFUN or MPFIT2DFUN quickly

```
- FUNCTION PARABOLA, X, P

F = P[0] + X*P[1] + X^2*P[2]

RETURN, F

END
```

For More on the Basics

- Setting parameter boundaries (PARINFO)
- Passing private information (FUNCTARGS)
- Retrieving best-fit model function and chisquare value (YFIT and BESTNORM)
 - See my website

More Advanced Topics

- Multi-dimensional data
- Complicated constraints
- Equation solving

Example: Line Fit, Errors in X and Y

 Numerical Recipes technique of modified chi-square value:

modified chi-square value:
$$\chi^2 = \sum \frac{(y_i - a - bx_i)^2}{\sigma_{yi}^2 + b^2 \sigma_{xi}^2} \frac{\partial}{\partial y_i} \frac{\partial}{\partial x_i} \frac{\partial}{\partial y_i} \frac{\partial}{\partial x_i} \frac{\partial}{\partial$$

This looks exactly like an equation MPFIT will solve:

$$\chi^2 = \sum_{i=1}^M r_i^2$$

• If we set
$$r_i = \frac{y_i - a - bx_i}{\sqrt{\sigma_{yi}^2 + b^2 \sigma_{xi}^2}}$$

Fitting with X and Y Errors

 LINFITEX: a user function which implements this technique

```
resid = (y - f)/sqrt(sigma_y^2 + (b*sigma_x)^2)
```

We call MPFIT with this user function

Demo (MPFIT_LINFITEX)

Fitting In Two Dimensions

Example problem:

- A meteor appeared and exploded near a remote Alaskan town
- The townspeople located several meteorite fragments and reports to us at local observing station
- Goal: determine point of meteor explosion from fragment locations

Centroid Point

• We approximate the explosion point as the centroid, (x_c, y_c) , the point which has the smallest joint distance from all fragments

$$\min(\operatorname{dist}^{2}) = \sum_{i=1}^{\infty} (x_{i} - x_{c})^{2} + (y_{i} - y_{c})^{2}$$

 Again, this looks exactly like a problem MPFIT can solve, except with twice as many residuals

$$\chi^2 = \sum_{i=1}^{M} r_{xi}^2 + r_{yi}^2$$

MPFIT Model

 MPFIT will understand this if the two sets of residuals are appended:

```
FUNCTION MPFIT_CENT, P, X=X, Y=Y
    resid_x = (x-p[0])
    resid_y = (y-p[1])
    resid = [resid_x, resid_y]
    return, resid
END
```

Demonstration (MPFIT_METEORITE)

Adding Complex Constraints

- New Meteorite Information!
 - Station sensors detected a light flash and sonic boom, allowing range to be determined to 9.56 km
- We now know the explosion point lies somewhere on the circle
- How can we add this new information?

MPFIT Model

Express this new parameter constraint as,

$$(x_c - x_s)^2 + (y_c - y_s)^2 = R^2 = (9.56 \text{km})^2$$

- But how can we force MPFIT to honor this constraint?
- Trick: re-write the constraint to be another "residual", which should equal 0, and MPFIT will solve it along with all the other residuals

$$r_0 = 0$$

$$r_1 = 0$$

New Constraint!

$$(x_c - x_s)^2 + (y_c - y_s)^2 - R^2 = 0$$

MPFIT Model

 MPFIT will understand this we now append three sets of residuals:

```
resid_x = (x-p[0])
resid_y = (y-p[1])
resid_r = (p[0]-xs)^2 + (p[1]-ys)^2 - radius^2
resid = [resid_x, resid_y, resid_r/tolerance]
```

Demonstration (MPFIT_METEORITE)

Two Constraints!

- Even Newer Meteorite Information!
 - A station staffer observed the flash visually and obtained a sight line of 48 deg north of east
- We now know a second line of constraint
- How can we add this new information?

$$r_0 = 0$$

$$r_1 = 0$$

$$y_c = \tan(\theta)(x_c - x_s) + y_s$$

Another Constraint!

$$(x_c - x_s)^2 + (y_c - y_s)^2 - R^2 = 0$$

$$\tan(\theta)(x_c - x_s) + y_s - y_c = 0$$

$$\tan(\theta)(x_c - x_s) + y_s - y_c = 0$$

MPFIT Model

 MPFIT will understand this if we now append a fourth residual function:

```
resid_s = tan(sight_angle*!dtor)*(p[0]-xs) + ys - p[1]
resid = [..., resid_s / sight_pos_tolerance]
```

Demonstration (MPFIT_METEORITE)

Equation Solving

 The two last constraints in this problem are alone enough completely specify the explosion point

$$(x_c - x_s)^2 + (y_c - y_s)^2 - R^2 = 0$$

$$\tan(\theta)(x_c - x_s) + y_s - y_c = 0$$

We don't even need data!

MPFIT Model

 MPFIT will understand this if we keep only the last two constraint equations:

```
resid_r = (p[0]-xs)^2 + (p[1]-ys)^2 - radius^2
resid_s = tan(sight_angle*!dtor)*(p[0]-xs) + ys - p[1]
resid = [resid_r/tol, resid_s / sight_pos_tolerance]
```

Demonstration (MPFIT_METEORITE)

Caveats

- This technique depends on using MPFIT, not the other more "convenient" routines
- If MPFIT finds a solution, that does not prove it is unique (could be multiple solutions!)
 - Depends on initial conditions
- If equations are poorly behaved, MPFIT may get stuck
 - Need to adjust derivatives parameters via PARINFO

Take Away Messages

- MPFIT is a power equation solver
- Fitting M points is just solving M equations
- Adding new constraints is straightforward, just add new "residual" equations
 - i.e. re-express constraint as (function) / (tolerance) = 0
- Other estimators like "least absolute deviation" (LAD) and Poisson likelihood can be solved by warping their equations to look like a sum of squared residuals

Getting MPFIT

- IDL version: http://purl.com/net/mpfit
- C version at same site