[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: unwrap modulo 2pi
Modulo Operator Notes
quotient: q = a / b
remainder: r = a mod b
So,
a b a/b a mod b
10 3 3 1
3 10 0 3
-10 -3 -3 -1
It is *always* true that a = q*b + r with abs(r) < abs(b) and b neq 0
Randall
graham_wilson@my-deja.com wrote:
> My appologies for not being explicit enough...
>
> IDL> a=[2,4,6,8,10,12]
> IDL> a=[2.,4.,6.,8.,10.,12.]
> IDL> b=2*!PI
> IDL> c=a mod b
> IDL> print, c
> 2.00000 4.00000 6.00000 1.71681 3.71681 5.71681
>
> What I mean by 'unwraping' is: Given I know 'c' and 'b' how do I
> explicitly find a?
>